Management of Astigmatism in Cataract Surgery

Jonathan B. Rubenstein, MD
Vice-Chairman and
Deutsch Family Professor of Ophthalmology
Director of Cornea and Refractive Surgery
Rush University Medical Center
Financial Disclosure

- Alcon
 - Consultant
- Allergan
 - Consultant
- Bausch and Lomb
 - Consultant
The goal of cataract surgery in the year 2012 is to achieve emmetropia or balance with the fellow eye.

1. The **spherical component** is calculated using
 - IOL Master or LensStar
 - Water bath ultrasound
 - Keratometry or topography

2. The **astigmatic component** can be controlled by
 - Size and location of the cataract wound
 - Intra-operative relaxing incisions
 - Toric IOLs
 - Post-operative
 - Astigmatic Keratotomy, Wound Revision or Excimer laser
Control of Astigmatism is especially important with the use of accommodating and pseudo-accommodating IOLs and phakic IOLs

Goal is to achieve ≤ 0.50 D of post-op cylinder
What is the best way to manage astigmatism?

- PCRI
- Toric IOLs
Peripheral Corneal Relaxing Incisions (PCRI)

- Incisions made ~ 90% depth, in front of the limbus, in the steep meridian of the cornea
- Incisions in the peripheral clear cornea
 - Heals faster
 - Refractive effect stabilizes quickly
 - Less irregular astigmatism, glare and foreign body sensation
Pre-operative Assessment of Astigmatism
Magnitude and Axis

- Manual Keratometry
- IOL master or LENSTAR
- Corneal Topography
- Elevation mapping
Pre-operative Assessment of Astigmatism

- **Best test for axis**
 - IOL master – quantitative
 - Topography – qualitative

- **Best test for power**
 - Manual Keratometry
Peripheral Corneal Relaxing Incisions - Technique

- Alignment is critical!
- Mark the 6 o’clock position on the patient’s limbus with the patient sitting up looking straight ahead with both eyes open.
III. Peripheral Corneal Relaxing Incisions - Technique

Mark the steep corneal axis, in the OR, using a marked fixation ring, astigmatic ruler or arcuate marker with the 90° mark aligned with 6 o’clock.
Many different types of astigmatic markers are available.

Mark in **mm** or in **degrees** – depending upon which nomogram used.
III. Peripheral Corneal Relaxing Incisions - Technique

- Measure the thinnest limbal corneal thickness and set the diamond knife or use a preset diamond knife set to 550 or 600 microns.
- Make incisions before cataract surgery using a single footplate front cutting diamond blade.
III. Peripheral Corneal Relaxing Incisions - Nomograms

- Can correct 1.00 – 3.00D of astigmatism
- Base technique on one of many established nomograms:
 - a. Gills/Fenzel
 - b. Nichamin
 - c. Koch

Koch nomogram

<table>
<thead>
<tr>
<th>Cataract WTR Astigmatism (steep meridian at 090)*</th>
<th>Pre-op Astig</th>
<th>Age</th>
<th>Number</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75 – 1.00 D</td>
<td><65</td>
<td>2 or 1</td>
<td></td>
<td>45° = 4.5mm</td>
</tr>
<tr>
<td></td>
<td>>65</td>
<td>1</td>
<td></td>
<td>60° = 6.0mm (if asymmetric)</td>
</tr>
<tr>
<td>1.01-1.75 D</td>
<td><65</td>
<td>2</td>
<td></td>
<td>60° = 6.0mm</td>
</tr>
<tr>
<td></td>
<td>>65</td>
<td>2 or 1</td>
<td></td>
<td>50° = 5.0mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>60° = 6.0mm (if asymmetric)</td>
</tr>
<tr>
<td>>1.75 D</td>
<td><65</td>
<td>2</td>
<td></td>
<td>80° = 8.0mm</td>
</tr>
<tr>
<td></td>
<td>>65</td>
<td>2</td>
<td></td>
<td>60-70° = 6.0-7.0mm</td>
</tr>
</tbody>
</table>

*combined w/ 3.0mm corneal temporal wound (150°-30° OD, 0°-30° OS)

Cataract ATR/Oblique Astigmatism (steep meridian at 180)*

<table>
<thead>
<tr>
<th>Pre-op Astig</th>
<th>Age</th>
<th>Number</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00-1.25 D**</td>
<td>--</td>
<td>1</td>
<td>35-40° = 3.5-4.0mm</td>
</tr>
<tr>
<td></td>
<td>--</td>
<td>2</td>
<td>30° = 3.0mm</td>
</tr>
<tr>
<td>1.26-2.00 D**</td>
<td>--</td>
<td>1</td>
<td>45° = 4.5mm</td>
</tr>
<tr>
<td></td>
<td>--</td>
<td>2</td>
<td>40° = 4.0mm</td>
</tr>
<tr>
<td>>2.00 D</td>
<td>--</td>
<td>2</td>
<td>45° = 4.5mm</td>
</tr>
</tbody>
</table>

*combined w/ 3.0mm corneal temporal wound (150°-30° OD, 0°-30° OS)
III. Peripheral Corneal Relaxing Incisions - Example

Example:

A 75yo pt. With 2.5 D @ 180°:

Use paired 45° cuts (Koch) at the limbus at the 3 o’clock position or paired 50° cuts (Nichamin) at 180°

Koch Nomogram ATR

<table>
<thead>
<tr>
<th>Cataract WTR Astigmatism (steep meridian at 090°) *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-op Astig</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>0.75 – 1.00 D</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1.01-1.75 D</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>>1.75 D</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

*combined w/ 3.0mm corneal temporal wound (150°-30° OD, 0°-30° OS)

<table>
<thead>
<tr>
<th>Cataract ATR/Oblique Astigmatism (steep meridian at 180°) *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-op Astig</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>1.00-1.25 D**</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1.26-2.00 D**</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>>2.00 D</td>
</tr>
</tbody>
</table>

*combined w/ 3.0mm corneal temporal wound (150°-30° OD, 0°-30° OS)
Example:

A 75yo pt. With 2.5 D @ 180°:

- Use one 6mm cut (Koch) at the limbus at the 3 o’clock position or paired 50° cuts (Nichamin) at 180°.
Peripheral Corneal Relaxing Incisions
- Technique -

- Make incisions at the beginning of the case
- As first step, before paracentesis
- After paracentesis, after filling the eye with viscoelastic till firm
III. Peripheral Corneal Relaxing Incisions

- After PCRI is made, make your usual temporal cataract incision

- If the PCRI is **against-the-rule**, limit the PCRI to **3 mm length** and make cataract incision **within** the PCRI

- If the PCRI is **with-the-rule**, make paracentesis peripherally and PCRI more centrally

- Calculate the IOL in the same way as normal - **no change in spherical equivalent** is produced
PCRI w/ ReSTOR
Future Developments

Femto-second LRIs

Limbal Relaxing Incisions
Future Developments

Refining the Astigmatism axis location

- SensoMotoric Instruments (SMI)
- TrueVision 3D system
Future Developments

Intra-operative aberometry

WaveTec
ORA
Peripheral Corneal Relaxing Incisions
Special Indications

- High corneal astigmatism
 - > 5.00 D
 - Combine PCRI with Toric IOLs
- Low corneal astigmatism
 - 0.75 – 1.25 D
- Irregular corneal astigmatism
 - Non-orthogonal axis
 - When exact axis in question
- Inability to implant a planned Toric IOL secondary to capsular break or zonular instability, still can correct cylinder with a PCRI
Toric Lenses

STAAR

Alcon

RUSH
Rayner Toric IOLs

C-flex IOL (570C) Superflex® IOL (620H) Sulcoflex® Toric (653T)
II. Staar Toric IOL

A. A plate-haptic style foldable silicone IOL

B. A biconvex 6mm optic IOL with a spherocylinder anterior surface and a spherical posterior surface
II. Staar Toric IOL

C. The interhaptic diameter is 10.8 mm with a 1.15 mm round hole

D. Powers of 2.0 D and 3.5 D that can correct from 1.5 - 3.5 D of preoperative astigmatism
II. Staar Toric IOL

Complications:
- Decentration of IOL - ?? increased in plate IOL’s?
- Lens rotation or shift
 - Lose 3.3% of cylinder with each degree off axis
 - May need manipulation of IOL, at slit lamp or in the OR
- Increased posterior capsule opacification??
- Increased pitting of silicone with YAG??
- Bad IOL for Pt.s at risk for vitrectomy
AcrySof® TORIC IOL

- **Design**
 - AcrySof Single-Piece platform
 - Aspheric
 - Posterior toricity
 - Spherical Power Range +6 to +30 D
 - Astigmatic power 1 – 5 D

- **Dimensions**
 - Overall length: 13.0 mm
 - Optic diameter: 6.0 mm
 - A-Constant – 119.0 for SN6AT

- **Delivery**
 - Monarch III Injector
 - B, C or D Cartridge

Steep K alignment marks
Cylinder Powers

A wide range of cylinder powers means more candidates can benefit from AcrySof® IQ Toric IOL.

<table>
<thead>
<tr>
<th>ALCON® LENS MODELS</th>
<th>SN6AT3</th>
<th>SN6AT4</th>
<th>SN6AT5</th>
<th>SN6AT6</th>
<th>SN6AT7</th>
<th>SN6AT8</th>
<th>SN6AT9</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOL Plane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylinder Power</td>
<td>1.50 D</td>
<td>2.25 D</td>
<td>3.00 D</td>
<td>3.75 D</td>
<td>4.50 D</td>
<td>5.25 D</td>
<td>6.00 D</td>
</tr>
<tr>
<td>Corneal Plane*</td>
<td>1.03 D</td>
<td>1.55 D</td>
<td>2.06 D</td>
<td>2.57 D</td>
<td>3.08 D</td>
<td>3.60 D</td>
<td>4.11 D</td>
</tr>
<tr>
<td>Recommended Corneal Astigmatism Correction Range</td>
<td>0.75 D to 1.54 D</td>
<td>1.55 D to 2.05 D</td>
<td>2.06 D to 2.56 D</td>
<td>2.57 D to 3.07 D</td>
<td>3.08 D to 3.59 D</td>
<td>3.60 D to 4.10 D</td>
<td>4.11 D and up</td>
</tr>
</tbody>
</table>

*Based on average pseudophakic human eye.
Cylinder Powers

Distribution of Pre-operative Cylinder

Estimated Distribution of Preoperative Cylinder
Toric IOL Procedural Considerations

- Surgeon performs **standard** cataract procedure from capsulorhexis through phacoemulsification

- Toric IOL implantation requires **only minor variation** from standard procedure:
 1. IOL calculation
 2. Marking of the eye
 3. IOL alignment (on-axis)
1. IOL Calculation

Step I:
- Determine required spherical power using preferred method

Step II:
- Utilize AcrySof Toric IOL Calculator to determine
 - The correct Toric model
 - Optimal axis location of the IOL
 - www.acrysoftoriccalculator.com
Please select the appropriate AcrySof® Toric IOL model for implantation.

- **AcrySof® Toric IOL**
 - Models: SN60T3, SN60T4, SN60T5, SN60T6, SN60T7, SN60T8, SN60T9
 - Suggested A-Constant: 118.4°

- **AcrySof® IQ Toric IOL**

- **aspheric**
 - Models: SN6AT3, SN6AT4, SN6AT5, SN6AT6, SN6AT7, SN6AT8, SN6AT9
 - Suggested A-Constant: 119.0°

- **AcrySof® IQ ReSTOR® Multifocal Toric IOL**
 - aspheric Models: SND1T2, SND1T3, SND1T4, SND1T5
 - Suggested A-Constant: 118.9°
AcrySof Toric IOL Calculator

Precision Calculations:
- Uses vector analysis to determine correct axis
- Compensates for surgically induced astigmatism

Data Input:
- Preoperative manual keratometry
- IOL power
- Incision location
- Estimated surgically induced astigmatism
2. Marking of the Eye

I. Reference Marks (pre-op)

- Single mark at 6:00 limbus
- Patient in sitting position (avoid cyclotorsion)

II. Axis Marks (intra-op)

- Axis marks identify the optimal axis of IOL placement
- Axis marks are placed on the eye using 6 o’clock pre-op reference mark for alignment steep axis
Reference Marks

Axis Marks

6 o'clock

Astig. axis
3. IOL Alignment

3 Step Procedure:
I. Gross alignment
II. Removal of OVD
III. Final alignment
IOL Alignment

I. Gross Alignment

- Rotate IOL clockwise to approximately 5 - 10 degrees short of desired position or on axis if can be kept stable
- Complete while the IOL is unfolding in the capsular bag
IOL Alignment

II. Stabilize IOL During OVD Removal

- Take care to prevent IOL from rotating past intended axis during OVD removal
 - 2nd instrument
 - I/A tip - polyester
 - Bi-manual I/A
 - Thoroughly remove all the OVD from behind IOL
II. Stabilize IOL During OVD Removal
III. Final Alignment

- Carefully rotate IOL clockwise precisely onto the intended axis of alignment with infusion running
- Tap IOL down into capsular bag to seat lens in place
Patient Selection

- 1 to 5 diopters of cylinder
- Intact capsule
- Continuous curvilinear capsulotomy (CCC)
- In the bag lens placement
Dealing with the Compromised Cornea in Cataract Surgery

Jonathan B. Rubenstein, MD
Vice-Chairman and Deutsch Family Professor of Ophthalmology
Rush University Medical Center
Chicago, IL
Disclosure

- Alcon – Consultant
- Allergan – Consultant
- Bausch and Lomb - Consultant
Causes for Compromised Endothelium in the Cataract Patient

- Fuchs’
- Advanced age
- History of angle closure
- History of trauma
- Chronic inflammation
- Previous anterior segment surgery
Fuchs’ Dystrophy

- Bilateral, non-inflammatory, progressive loss of endothelium
- A leading cause of endothelial dysfunction
- Relatively common corneal dystrophy
 - Affects ~ 1% of population
 - Approximately 15% of keratoplasties
Fuchs’ Dystrophy

- Inherited with variable penetrance
 - Autosomal Dominant
 - A defect in type VIII collagen?
- Onset usually 30’s – 50’s, clinically significant by 60’s – 80’s
- Women > Male (4:1 at time of keratoplasty)
- Commonly associated with cataract and COAG
Fuchs’ Dystrophy

Signs:
- Guttata (excrescences of Descemet’s)
 - First centrally, eventually beaten metal appearance
 - Best seen with indirect illumination, retro-illumination or sclerotic scatter
- Decreased endothelial cell count
 - Specular microscopy
 - Confocal microscopy
- Corneal edema
 - Central, pre-Descemet’s first,
 - Eventually epithelial edema
- Descemet’s folds
- Cataract
- Glaucoma
Fuchs’ Dystrophy

- **Symptoms:**
 - Early AM blurred Va from corneal edema
 - Disrupted quality of Va secondary to guttata
 - Eventually, continuous blurred Va, glare and haloes
 - Pain/foreign body sensation and worse Va from epithelial edema in later stages
 - Decreased Va also from cataract and/or glaucoma
Fuchs’ Treatment Dilemma

- Surgery based upon assessment of visual impairment from cornea versus cataract
- Perform cataract surgery alone
 - Quicker Va recovery, if cornea can recover
- Perform corneal surgery first
 - DSEK first
 - Worry about damaging new endothelium with eventual cataract surgery
- Combined DSEK/Phaco/PCL
Pre-Op Corneal Assessment

- **Pachymetry**
 - Best assessment of endothelial cell function
 - Optical – slit lamp
 - Ultra-sound
 - Pentacam/Galilei
 - Specular Microscope
 - Confocal Microscope
 - Want central pach < 620 μ
 - Need clinical correlation – assess symptoms to see if corneal edema is clinically significant
Pre-Op Corneal Assessment

- **Endothelial Cell Studies**
 - Slit lamp – specular reflection
 - Specular microscopy
 - Confocal microscopy
 - Especially in corneas with significant corneal edema
Pre-Op Corneal Assessment

- **Endothelial Cell Studies**
 - Endothelial cell count - age dependent
 - **Want > 1000 cells**
 - Polymegathism
 - Pleomorphism
 - Percent hexagonality
 - **> 60%**
Pre-Op Corneal Assessment

- Polymegathism
 - size

- Pleomorphism
 - shape
Surgical Options
Decision

Cataract Surgery alone vs DSEK/Phaco

- **Best criteria based upon patient’s symptoms:**
 - Early AM blur or clouding
 - Hazy Va after shower or in high humidity
 - Early AM foreign body sensation

- **Signs less helpful**
 - Frank edema at slit lamp
 - Pach > 620 microns
 - Cell count < 1000 cells/mm²
Surgical Options

- Cataract Surgery first
 - Technique to minimize endothelial cell trauma
 - BSS+
 - Low flow slow mo settings
 - Peripheral clear corneal incision
 - Dispersive OVD – re-apply
 - Phaco chop – low phaco time
 - ? Smaller capsulorhexis
 - IOL power at -1.25 D
 - Avoid presbyopic IOLs
Combined Procedures

DSEK/Phaco/PCL

- Perform normal Phaco/PCL first, then DSEK
 - Need relatively good view through cornea
- 2.4 mm clear corneal incision first then enlarge to 4.0 mm
- DSEK performed under cohesive viscoelastic
 - Need meticulous removal of a cohesive viscoelastic
IOL Considerations

- **Cataract Surgery first, DSEK later**
 - Aim for -1.25 of myopia
 - Keratometry may be inaccurate if corneal edema
 - Three piece IOL may be better
 - Avoid presbyopic IOLs
 - Toric IOL may be OK, however K’s may change after 4mm DSEK incision and IOL position could change after DSEK
IOL Considerations

- **DSEK/Phaco/PCL**
 - Corneal power changes are relatively predictable, therefore IOL calculations can be made from pre-op corneal keratometry
 - DSEK does flatten the cornea, so plan for ~-1.25 of myopia in calculating IOL power
 - Thin DSEK and DMEK will cause less central corneal flattening
DSEK/Phaco
1 month post-op